BROADBAND SPECTRUM SURVEY AT SAN DIEGO, CALIFORNIA

PREFACE

A spectrum survey often depends upon significant efforts by personnel not directly involved in the measurements. We wish to thank the following people who made the spectrum survey at San Diego, California a success: Commander H. Hugo of the Naval Command, Control and Ocean Surveillance Center (NCCOSC), who granted us permission to use the Battery Ashburn area on Pt. Loma for the survey; T. DiMattio of the Cabrillo National Monument, who granted us access to Monument property; F. Kirtman of the NCCOSC spectrum management office, who provided us with information on individual transmitters on the Point; L. Kilgore of the Naval Research and Development (NRaD) security division, who made physical security arrangements at the site; and H. Grigsby of the San Diego Federal Communications Commission office for providing valuable background information on spectrum activities in the San Diego area.

Certain commercial equipment and software are identified in this report to adequately describe the measurements. In no case does such identification imply recommendation or endorsement by the National Telecommunications and Information Administration, nor does it imply that the equipment or software identified are necessarily the best available for the application.

This report, along with other ITS reports, is available on the World Wide Web through the ITS home page. The home page address is: http://ntia/home. html. The ITS online document page address is: http://ntia/pub/pubs. html.

CONTENTS

	Page
PREFACE	iii
FIGURES	vi
ABSTRACT	1
1. INTRODUCTION 1.1 Background 1.2 Authority 1.3 Purpose 1.4 Extrapolation of Spectrum Occupancy Data	1 1 2 2 2
2. OVERVIEW OF BROADBAND SPECTRUM SURVEYS	3 3 4
3. SAN DIEGO SPECTRUM SURVEY 3.1 Introduction	13 13 13 17 18 59
4. REFERENCES	68
A. APPENDIX A: RADIO SPECTRUM MEASUREMENT SYSTEM (RSMS)	69
B. APPENDIX B: DATA ACQUISITION SOFTWARE	79
C. APPENDIX C: INTERPRETATION OF SPECTRUM SURVEY DATA	85
D. APPENDIX D: CALIBRATION OF THE MEASUREMENT SYSTEM	99

FIGURES

		Page
Figure 1.	Area map of San Diego, California showing the location of the RSMS measurement site on Point Loma	14
Figure 2.	Area map of San Diego, California showing line-of-sight areas from the RSMS measurement site	15
Figure 3.	ITS Radio Spectrum Measurement System at Point Loma, San Diego, California	16
Figure 4.	Spectrum survey graph summarizing swept/m3 measurements in the 108-138 MHz frequency range	19
Figure 5.	Spectrum survey graph summarizing swept/m3 measurements in the 138-162 MHz frequency range	20
Figure 6.	Spectrum survey graph summarizing swept/m3 measurements in the 162-174 MHz frequency range	21
Figure 7.	Spectrum survey graph summarizing swept/m3 measurements in the 174-216 MHz frequency range	22
Figure 8.	Spectrum survey graph summarizing swept/m3 measurements in the 216-225 MHz frequency range	23
Figure 9.	Spectrum survey graph summarizing swept/m3 measurements in the 225-400 MHz frequency range	24
Figure 10.	Spectrum survey graph summarizing swept/m3 measurements in the 400-406 MHz frequency range	25
Figure 11.	Spectrum survey graph summarizing swept/m3 measurements in the 406-420 MHz frequency range	26
Figure 12.	Spectrum survey graph summarizing stepped measurements in the 420-450 MHz frequency range	27
Figure 13.	Spectrum survey graph summarizing swept/m3 measurements in the 450-470 MHz frequency range	28
Figure 14.	Spectrum survey graph summarizing swept/m3 measurements in the 470-512 MHz frequency range	29

FIGURES (Continued)

	Page
Figure 15.	Spectrum survey graph summarizing swept/m3 measurements in the 512-806 MHz frequency range
Figure 16.	Spectrum survey graph summarizing swept/m3 measurements in the 806-902 MHz frequency range
Figure 17.	Spectrum survey graph summarizing swept measurements in the 902-928 MHz frequency range
Figure 18.	Spectrum survey graph summarizing stepped measurements in the 902-928 MHz frequency range
Figure 19.	Spectrum survey graph summarizing swept/m3 measurements in the 928-960 MHz frequency range
Figure 20.	Spectrum survey graph summarizing swept/m3 measurements in the 960-1215 MHz frequency range
Figure 21.	Spectrum survey graph summarizing stepped measurements in the 1215 -1400 MHz frequency range
Figure 22.	Spectrum survey graph summarizing swept/m3 measurements in the 1350- 1400 MHz frequency range
Figure 23.	Spectrum survey graph summarizing swept/m3 measurements in the 1400- 1530 MHz frequency range
Figure 24.	Spectrum survey graph summarizing swept/m3 measurements in the 1530- 1710 MHz frequency range
Figure 25.	Spectrum survey azimuth-scan graph of measurements in the 1710-2300 MHz frequency range
Figure 26.	Spectrum survey graph summarizing swept measurements in the 2300-2500 MHz frequency range
Figure 27.	Spectrum survey azimuth-scan graph of measurements in the 2500-2700 MHz frequency range
Figure 28.	Spectrum survey graph summarizing stepped measurements in the 2700-2900 MHz frequency range

FIGURES (Continued)

		Page
Figure 29.	Spectrum survey graph summarizing stepped measurements in the 2900-3100 MHz frequency range	44
Figure 30.	Spectrum survey graph summarizing stepped measurements in the 3100-3700 MHz frequency range	45
Figure 31.	Spectrum survey azimuth-scan graph of measurements in the 3700-4200 MHz frequency range	46
Figure 32.	Spectrum survey graph summarizing swept/m3 measurements in the 4200-4400 MHz frequency range	47
Figure 33.	Spectrum survey azimuth-scan graph of measurements in the 4400-5000 MHz frequency range	48
Figure 34.	Spectrum survey graph summarizing swept/m3 measurements in the 5000-5250 MHz frequency range	49
Figure 35.	Spectrum survey graph summarizing stepped measurements in the 5250-5925 MHz frequency range	50
Figure 36.	Spectrum survey azimuth-scan graph of measurements in the 5925 -7125 MHz frequency range	51
Figure 37.	Spectrum survey azimuth-scan graph of measurements in the 7125 -8500 MHz frequency range	52
Figure 38.	Spectrum survey graph summarizing stepped measurements in the 8500-10550 MHz frequency range	53
Figure 39.	Spectrum survey azimuth-scan graph of measurements in the 10550-13250 MHz frequency range	54
Figure 40.	Spectrum survey graph summarizing stepped measurements in the 13250-14200 MHz frequency range	55
Figure 41.	Spectrum survey azimuth-scan graph of measurements in the 14200- 15700 MHz frequency range	56
Figure 42.	Spectrum survey graph summarizing stepped measurements in the 15700- 17700 MHz frequency range	57

FIGURES (Continued)

		Page
Figure 43.	Spectrum survey azimuth-scan graph of measurements in the 17700-19700 MHz frequency range	58
Figure A-1.	Top and side view drawings of the RSMS	70
Figure A-2.	Front panel of the RSMS instrument racks	71
Figure A-3.	Block diagram of the RSMS receiver	72
Figure C-1.	Functional diagram of the RSMS signal-processing path for cumulated data	89
Figure D-1	. Example calibration graph of noise figure and correction factor curves	99
Figure D-2.	Typical noise diode solid state noise source	100
Figure D-3	. Lumped-component noise diode calibration schematic	101